『章节错误,点此举报』
第250章 人工智能项目的探讨[1/2页]
历景铄还未露面,周瑾龙却率先带来一则消息:鹏城电视台《今日鹏城》栏目的记者李杰,有意采访秦奕。
不仅如此,李杰目前正在筹备一部名为《前进中的鹏城》的纪录片,他表达了让秦奕也参与录制这部纪录片的意愿。
能借助鹏城电视台这一平台扩大自身影响力,秦奕哪有拒绝的道理,当下便与李杰敲定,几日后接受采访,同时也会全力配合纪录片的录制。
刚敲定采访时间,历景铄恰好赶到。
秦奕随即领着历景铄步入会议室,一同探讨起他的人工智能项目。
实际上,在理想基金的项目申请中,并非仅有历景铄的项目与人工智能相关。除他之外,还有两个项目同样聚焦于人工智能领域,只不过那两个项目专注于人工智能的专家系统分支,而历景铄选择钻研的,则是神经网络分支。
至于秦奕为什么青睐历景铄的项目,而非另外两个呢?这就得从人工智能未来的发展态势说起了。
秦奕心里清楚,当下基于逻辑推理与规则系统的专家系统技术正日益成熟,应用领域如雨后春笋般迅速拓展,已广泛深入到各个专业领域。
在国际市场上,众多企业已开发出数以千计的专家系统,不少在功能上已达到甚至超越同领域人类专家的水平,创造出颇为可观的经济效益。
与此同时,专家系统在理论与方法层面也得到深入探究,适用于其开发的程序语言和高级工具相继问世,这些专家系统工具的出现,极大地加快了开发进程,进一步推动了其普及应用。
然而从前世的经验来看,现在兴盛的专家系统注定只能是昙花一现,难以长久辉煌。
在即将到来的
20
世纪
90
年代初期,专家系统的局限性将逐渐显现。诸如知识获取困难、维护成本高昂、对复杂和动态问题处理能力不足等问题,都将成为阻碍其进一步发展的绊脚石。
此外,随着计算机通用性能的提升,专用的专家系统硬件优势不再,再加上人工智能领域其他技术的激烈竞争,专家系统将逐渐走向衰落。
直至
21
世纪
10
年代之后,深度学习兴起,专家系统与深度学习以及一些其他新兴技术融合后,才会再度出现在大众视野之中。
反观历景铄所选的人工智能方向
——
神经网络,此前曾陷入发展低谷。
1969
年,人工智能领域的两位先驱马文?明斯基和西摩?佩珀特出版了《感知机》一书。
书中明确指出,感知机仅能处理线性可分问题,面对异或问题这类线性不可分的情况则无能为力,并且认为在当时的条件下,多层神经网络的训练算法难以实现。这一观点给神经网络的研究带来了极为沉重的打击。
后来的事实也的确在一定程度上验证了书中的说法,尽管神经网络的概念早已存在,但人们始终未能找到有效训练多层神经网络的方法。传统的神经网络在训练过程中,面对多层结构,往往难以有效地调整每一层的参数,致使网络难以很好地学习复杂模式。
第250章 人工智能项目的探讨[1/2页]
『加入书签,方便阅读』